41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

B-1I-1 Platanie ciest

Zo zadania vyplyva, ze chceme vzdy platat najhlbsiu dieru. Za¢nime s najpriamociarejsim riesenim: vzdy prej-
deme celé pole hibok dier, vyberieme tt najhlbsiu a odéitame z nej jeden centimeter. Po k zopakovaniach tohto
procesu len vypiSeme vysku poslednej zaplatanej diery.

Pri hladani najhlbsej diery prechddzame polom dlzky n a toto musime spravit k krat. Vysledna ¢asova zlozitost
tohto rieSenia je preto O(nk), za ¢o sme vedeli z{skat nanajvys 3 body.

Teraz sa musime opytat tazk otdzku: ,Da sa to lepsie?“ Ked sa pozrieme na vyssie uvedené rieSenie, si v nom
dve podstatné Gasti: hladanie najvac¢sieho prvku v poli (najvicsej diery) a odéitavanie od tohto prvku (platanie
diery). Pozrime sa na tieto dve Casti jednotlivo.

Pri kazdom prejdeni pola hladdme najvacsi prvok (dokonca ktorykolvek z nich, pokial ich je viac). Ak by sme
presne vedeli, kde v poli sa nachddza najvacsi prvok, vedeli by sme si usetrit prechadzanie celého pola. A v
akom poli sa nachadza najvacsi prvok na znamom mieste? No predsa v usporiadanom! Ak si teda nase pole
usporiadame (idedlne vzostupne), budeme mat uréite na jeho konci najvaési prvok a teda ho budeme vediet
ndjst v ¢ase O(1) namiesto O(n). Toto usporiadanie pola nds bude sice stat O(nlogn) Casu, to je vSak menej
ako O(nk). Pozrime sa teraz na druhu Cast naSej skladacky.

V nasom jednoduchom rieseni od¢itavame ¢isla po jednom. Predstavme si vsak, ze mame nejaké mnozstvo dier
hibky 1 a v strede jeden masivny krater o hibke 10°. V tomto pripade budeme naozaj velmi dlho vyberat na
platanie tu istd dieru, nas krater. Moézeme teda miesto platania po jednom centimetri urobif naraz viacero
vyjazdov.

Nech z je hibka najhlbsej diery. Kolkokrat po sebe budeme platat tito dieru? No predsa kym sa jej hibka
nevyrovnd druhej najhlbSej diere. Ak je hibka druhej najhlbsej diery y tak vieme, Ze najblizsich = — y vyjazdov
bude smerovat k tej istej diere. Navyse, zistit hibku druhej najhlbsej diery je stéle velmi jednoduché, je to predsa
predposledna hodnota v nasom usporiadanom poli.

Toto funguje dobre, ak méame jeden velky krater. Pri vSeobecnom pripade nam vsak moze nastat situacia, ze
budeme striedat medzi skupinou dier, ktoré maji neustale rovnaké vysky. Predstavme si napriklad tri diery o
velkosti 10, teda pole [10,10, 10]. Postupne budi hibky dier vyzerat nasledovne:

10,10, 10] — [9, 10, 10] — [9,9,10] — [9,9,9] — [8,9,9] — ...

Spometime si viak, Ze v nasej tlohe nas zaujima iba hibka platanej diery, nie to, ktora diera bude platans. Ak
teda mame viacero najhlbsich dier hlbky z, nech je takychto dier p, tak najblizsich p vyjazdov iba zmensi hlbku
nejakej diery z x na x — 1. Navyse, po tychto p vyjazdoch budeme mat p dier s hlbkou z — 1.

Rozsirme si nas priklad este o jednu dieru navyse.

[7,10,10,10] — [7,10,10,10] — [7,9,9,10] = [7,9,9,9] — ... — [7,7,7,8] = [7,7,7,7] — ...

Tento priklad ndm ukazuje, Ze eSte viac vyjazdov vieme spravit naraz. Ak mame p najhlbsich dier s hibkou z a
dalSia najhlbsia diera ma hibku y, tak najblizsich p(z — y) vyjazdov bude iba postupne menit tychto p dier. No
a po tychto vyjazdoch sa diera hibky y ,pripoji* k nasej skupine najvicsich dier, ked zrazu budeme mat p + 1
dier hibky .

Teraz si viak opit vieme najst dalsiu najhlbsiu dieru s hibkou z a presko¢it tolko vyjazdov, kym nebudeme mat
p + 2 najhlbsich dier s hibkou z.

Nésmu rieseniu teda sta¢i postupne zvéicsovat pocet dier v skupine najhlbsich dier a naraz spracovavat vsetky
vyjazdy po dalSie zvécsenie tejto skupiny.

Ostéva nadm to implementovat. Nech n je pocet dier, hibky dier st zapisané vo vzostupne usporiadanom poli
diery[] a nasSa skupina najhlbsich dier mé velkost p (na zaciatku 1).

Vieme, ze v tejto skupine nutne musi byt poslednych p dier z nasho pola. Kedze je usporiadané, tak tieto diery
boli na zaciatku najhlbsie a iba oni sa mohli dorovnat. NavysSe, v okamihu ako vznikne skupina p rovnako
hlbokych dier je ich hibka rovnd presne hodnote diery[n - p] — vSetky vécsie diery dorovnali p-tu najhlbsiu
dieru.

strana 1 z 13 uloha B-II-1

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

Do skupiny najhlbsich dier sa ako dalsia pridd diera na pozicii diery[n - p - 1] a to prave vtedy, ked sa
vietkych p aktudlne najhlbsich dier zmensi z hibky diery[n - p] na hibku diery[n - p - 1]. A to sa stane
po presne p-(diery[n — p| —diery[n — p — 1]) vyjazdoch. Tento pocet vyjazdov teda odéitame od k a p zviadsime
ol.

Tento postup opakujeme az do momentu, kedy uz nemame k dispozicii dostato¢ny pocet vyjazdov k. Zvysné
vijazdy eSte dokézu znizit hibku kazdej aktudlne najhlbSej diery o k/p centrimetrov a ak eSte stdle nejaké
vyjazdy ostali (je ich uz menej ako p), niektoré z tychto dier sa zapldtaji eSte o jeden centimer. Z tohto vieme
pomerne jednoducho spocitat vysledntt hodnotu.

Ak4 je casova zlozitost tohto algoritmu? Pole si zoradime v ¢ase O(nlogn). Nésledne ideme odzadu a postupne
zvacsujeme velkost skupiny najhlbsich dier. Vdaka sikovnému rieSeniu viacerych vyjazdov naraz spravime kazdé
takéto rozsirenie v konstatnom Case, na tito ¢ast ndm teda staéi O(n) ¢asu. Findlna Casova zlozitost je teda
O(nlogn) a toto sta¢i na vyrieSenie lubovolného vstupu zo zadania.

Nasleduje Python-ové riesenie tlohy. Mozete z neho vycitat rézne implementacné detaily popisaného riesenia.

Listing programu (Python)

n, k = map(int, input().split())
diery = list (map(int, input().split()))

diery = list (sorted(diery))

Pridame si dieru hlbky nula, aby sme mali na com zastavit

a nevyskocili sme von z pola.

diery = [0] + diery

n += 1

Ideme pole prechadzat sprava. Rovnako dobre sa to da naprogramovat
aj zlava, ja to iba takto preferujem.

bezec = len(diery) - 1
while bezec != 0:
Prejdeme dolava az pokial nenarazime na dieru inej hlbky.
while diery[bezec] == diery[bezec - 1]:
bezec —= 1

Bezec teraz ukazuje na poslednu najvacsiu dieru.

rozdiel_dier = diery[bezec] - diery[bezec - 1]
pocet_dier = n - bezec
potrebne_zaplaty = rozdiel_dier * pocet_dier

if k >= potrebne_zaplaty:
Mame dost na zaplatanie az do hlbky mensej diery, pokracujeme ...
k —-= potrebne_zaplaty
else:
Nemame dost na zaplatanie az po dalsiu dieru. Musime zistit,
ktora je posledna hlbka, ktoru sa nam podari zaplatat.

Vypocitame kolkokrat vieme zaplatat’ lcm na vsetkych dierach.
cele = k // pocet_dier

Vypocitame, ci nam ostalo na zaplatanie iba zopar dier.
zvysok = k % pocet_dier

vysledna_hlbka = diery[bezec] - cele

if zvysok > O:
Ostalo nam trochu materialu na zapltanie casti dier, teda
niektore zo skupiny maju hlbku o lcm mensiu.
print (vysledna_hlbka - 1)
else:
Zaplatali sme vsetky diery v skupine.
print (vysledna_hlbka)
break

bezec -=1

B-11-2 Chemicka tovaren

Simulacia
Skiisme sa pozrief na jednoduchsiu verziu tlohy — ako by sme vedeli overit, ¢i jeden konkrétny pracovnik dokaze
uniknut z tovarne, ak by sme poznali ¢as ¢, v ktorom bol vyhlaseny poplach?

Aby sme mohli simulovat pohyb tohto pracovnika, potrebujeme vediet, kedy budu jednotlivé policka tovarne
zaplavené kyselinou. Toto je v vSak rovnaky problém, ako sme riesili v domécom kole, akurat namiesto informaécie

strana 2 z 13 uloha B-II-2

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

o zadaniach sa v nasej mriezke §iri kyselina. Pouzit teda mézeme prehladdvania do Sirky (BFS), detaily nechdme
na Citatela.

Ak pozname spravanie kyseliny, vieme opat pomocou BFS zistit, ako najrychlejsie sa dokaze pracovnik dostat zo
svojho pociato¢ného policka na Iubovolné iné policko. Iba do algoritmu musime pridat podmienku, ze nedovolime
pracovnikovi vojst na policko, na ktoré sa kyselina vie dostat skor.

Pre riesenie tlohy s jednym pracovnikom a znamym c¢asom t nam staci pustit dve prehladdvania do Sirky: raz
pre kyselinu, raz pre pracovnika, a potom len overime, ¢i sa pracovnik vedel dostat na policko U.

Ak je pracovnikov viac, oznacme si ich pocet p, jednoducho zistime odpoved pre kazdého zvlast. Toto ndm
to bude trvat nanajvys p-krat dlhsie.

Ak nevieme, kedy sa spusti poplach, m6zeme cely algoritmus spustit postupne pre ¢ast =0,t =1, t = 2,
...az kym nendjdeme prva hodnotu ¢, pre ktort sa uniknit neda.

Hladanie najmensieho casu t, pre ktoré sa neda uniknuf, vSak vieme robit aj efektivnejsie. Otdzka ,Da sa
uniknut, ak pustime poplach v case t7¢, je ekvivalentnd otazke ,Da sa uniknuf, ak pustime poplach v case ¢
alebo skor?“. Namiesto postupného overovania t = 0,1,2,... mdzeme nezndmu ¢ bindrne vyhladat.

Kedze vieme, Ze t je niekde medzi 0 a rs, zacneme hodnotou v strede. Ak sa z tovarne da uniknut, ked sa alarm
spusti v Case 57, tak dalej budeme hladat iba vo vécsich hodnotdch, ako dalsi budeme preto skusat cas %.
V opa¢nom pripade overujeme iba mensie hodnoty, pokracujeme teda testovanim casu 7*. Na O(logrs) otazok
najdeme tymto postupom hladané ¢.

Takto vieme dostat algoritmus, ktory O(logrs)-krat odsimuluje pohyb p pracovnikov (plati p < rs) pomocou

BFS, jeho ¢asova zloZitost je preto O(r?s?logrs).

Nizsie si mozete pozriet implementaciu, ktord simuluje vSetkych pracovnikov naraz. Pre kazdu sekundu si
udrziavame dvojrozmernt mriezku a pre kazdé policko mriezky si pamétame, ¢i uz bolo zaplavené, pripadne,
ktori pracovnici by sa nan uz stihli dostat.

Zo stavu sveta v sekunde n vieme spocitat, ako bude vyzeraf svet v sekunde n + 1 tak, ze prehladédvame iba z
policok, ktoré boli prvykrat navstivené v poslednej sekunde (rovnako ako BFS).

Listing programu (Python)

r, ¢ = [int(x) for x in input () .split ()]

T = [input () .strip() for x in range(r)]

di, 43 = (o, o, 1, -11, (1, -1, 0, 0]

def workers_can_be_saved(release_time=1) :
if release_time == -1: return True # bin-search sentinel
visited = [[set() for _ in t] for t in T] # set of workers (& acid as 0) that can be on this square
next = []

def try_spread_acid(i, j):
if 0 not in visited[i][]
visited([i][J].add(0)
next.append((i, j, 0))
def try_spread_worker (i, j, w):
if 0 not in visited[i][j] and w not in visited[i][]]:
visited[i] [J].add (w)
next.append((i, j, w))

]:

simulate each second
for t in range(r * c):
if t == 0: # release acid
for i in range(r):
for j in range(c):

if T[i][]J] == '"K':
try_spread_acid (i, j)
if t == release_time: # release workers

pid = 0
for i in range(r):
for j in range(c):
if T[i][]J)] == "P’':
pid += 1
try_spread_worker (i, j,pid)

current, next = next, []
if not current and t > release_time:
break
for i,3j,k in current:
for d in range(4):
ii, 33 = i + dil[d], j + dj[d]

strana 3 z 13 uloha B-II-2

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

if 0 <= i1 < r and 0 <= jj < c and T[ii][jJ] !'= "#':
if k == 0: try_spread_acid(ii, jJj)
else: try_spread_worker (ii, jj, k)
escaped = set () # which workers managed to escape

for 1 in range(r):
for j in range(c):

if T[i][j] == "U’:
escaped |= visited[i][]]
return len(escaped - set ([0])) == pid
b, e=-1, r x c

while e - b > 1:
m= (b +e) // 2
if workers_can_be_saved(m): b = m
else: e =m

print (b)

Vzorové riesenie

Najprv si ukdzeme, ako sa zbavit bindrneho vyhladavania, a potom ako efektivne vyriesit p pracovnikov iba s
jednym spustenim BFS.

Vsimnime si, ze ak sa pracovnik vie dostat na cielové policko U skor, ako ho zaleje kyselina, tak musi existovat
cesta z jeho pociatocného policka do cielového policka taka, ze na kazdé policko na ceste sa dostane pracovnik
skor ako kyselina.

Tvrdenie dokdzeme sporom. Predpokladajme, Ze ziadna taka cesta neexistuje, ¢ize vSetky cesty pracovnika,
ktoré skoncia na nezaplavenom U, maju nejaké policko, na ktoré sa kyselina dostane skor ako pracovnik. Potom
sa ale kyselina moze z tohto policka rozlievat tym istym sposobom, akym planuje ist pracovnik, a teda na policko
U sa dostane skor ako on. To je spor.

Ak sa teda pracovnik nevie dostat na U skor ako kyselina, tak nevie uniknut.

(Mimochodom, pri hodnotent ilohy sme strhdvali body rieseniam, ktoré toto turdenie vyuzivali, ale nemali ho
dostatocne zddévodnené. Nestaci totiz povedat, Ze to zjavne plati. Pri malej zmene tlohy to totiZ platit prestane,
vid' sekciu Bonus niZsie.)

Nech k je najkratsia vzdialenost spomedzi vSetkych policok K k policku U. Policko U bude teda zaplavené v case k.
Ak teda chceme overit, ¢i vie jeden konkrétny pracovnik uniknit pokial vyStartuje v ¢ase t, staci overit, i sa
dostane na policko U skor ako v ¢ase k, teda ¢i je jeho vzdialenost od U mensia ako k — t.

Ak uvazujeme viacerych pracovnikov, nech p je najvicsia zo vzdialenosti pracovnikov k policku U. Musi platit,
zZep<k—t resp.t<k—p-—1.

Tym padom sme si ale ukazali, ze najneskorsi mozny cCas, v ktorom musime spustit poplach je t =k —p — 1.

Pre policka K hladdme najkratsiu cestu k policku U. Vyuzif preto mozeme ten isty princip ako v domacom kole,
ked sme spustili jedno BFS naraz zo vsetkych poli¢ok K.

Pre pracovnikov P vsak hladame najdlhsiu zo vsetkych najkrajtsich ciest do U, ¢o tento sp6sob nevyriesi spravne.
Ako sa teda vieme vyhnit opakovanému pustaniu BFS?

Uvedomme si, ze vzdialenost z a do b je v nasej mriezke rovnaké ako vzdialenost z b do a. Namiesto toho aby
sme pre kazdé P hladali najkratsiu cestu do U moézeme pustit opacné BFS, ktoré pustime z policka U, a ktoré
nam najde najkratsiu cestu do vsetkych zvysnych policok, vratane vsetkych P.

Pre zhrnutie, tlohu vyriesime nasledovne: Pomocou jedného prehladavania do sirky so zaciatkom v U zistime
vzdialenosti vSetkych poli¢ok na mape od policka U. Ak sa na nejaké policko nedé dostat, jeho vzdialenost bude
nekonecno.

Spomedzi vSetkych vzdialenosti K vyberieme najmensiu a ozna¢ime ju k (v zadani méme zarucené, ze k je
konecne velké).

Spomedzi vSetkych vzdialenosti P vyberieme najvaésiu a oznadime ju p (moze byt aj nekoneéno).

Ak je k — 1 < p, vypiseme —1, inak je odpoved k — p — 1.

Casova zloZitost rieSenia je O(r x s), lebo pustime len jedno prehladdvanie do $irky na mriezke velkosti r x s a
zo ziskanych hodno6t uz potom lahko spocitame odpoved.

strana 4 z 13 uloha B-II-2

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

Listing programu (Python)

from collections import deque

r, ¢ = [int(x) for x in input () .split ()]
T = [input () .strip() for x in range(r)]
di, 43 = (o, o, 1, -11, [1, -1, 0, 0]
INF = 1023456789

BFS

distance = [[INF for _ in t] for t in T]
g = deque ()

min_acid_dist = INF

max_worker_dist = -1

for 1 in range(r):
for j in range(c):
if T[i][]J] == 'U":
g.append ((i, J))

distance[i] []] 0

while q:
i, Jj = q.popleft()
if T[i][j] == "K’':
min_acid_dist = min(min_acid_dist, distancel[i][]])
if T[i][j] == "P’':

max_worker_dist = max(max_worker_dist, distance[i][]])
for d in range(4):
ii, j3 =1 + di[d], J + dj[d]
if 0 <= i1 < r and 0 <= jj < c and T[ii]
distance([ii] [Jjj] = distance[i] []] +
g.append((ii, 33))

jj] != ’#’ and distance[ii][33] > distance[i][j] + 1:

if min_acid_dist < max_worker_dist + 1:
print (-1)
else:
print (min_acid_dist - max_worker_dist -1)

Bonus

Na zaver sa zamyslite, ako by sa tloha riesila, ak by sa pracovnici mohli hybat dvakrat rychlejsie nez kyselina
(krok kazdej pol sekundy).

Uz nestac¢i odmerat vzdialenosti, pretoze pozorovanie, ktoré sme spravili na zaciatku sekcie Vzorové riesenie uz
nebude platit.

B-11-3 Zber jahod

Podiloha a)

Pri hladani jednej najlepsej cesty cez mriezku moézeme vyuzit rieSenie podobné tomu z doméceho kola. Namiesto
toho, aby sme pocitali len jednu vyslednii hodnotu, budeme postupne pocitat najvynosnejsiu cestu s koncom na
kazdom polic¢ku. Presnejsie, pre kazdé policko (z,y) chceme vypocitat kolko najviac jahéd vie Hanka vyzbierat
na ceste z policka (0,0) na policko (z,y). Tato hodnotu oznacéime cesta(z,y).

Mozeme si uvedomit, Ze na policko (x,y) sa vieme dostat iba dvoma spdsobmi — bud naii prideme zhora, z
policka (z — 1,y) alebo zlava z policka (z,y — 1). No a kym sa dostaneme na tieto policka, chceme vyzbierat
¢o najviac jahod, z ktorych si potom vyberieme ti lepsiu moznost. Ak jahody(z,y) oznacuje pocet jahdd na
policku (z,y) tak nds to vedie k jednoduchému vzorcu na vypocet:

cesta(z,y) = jahody(z,y) + max(cesta(x — 1,y), cesta(z,y — 1))

Tieto hodnoty nasledne pocitame po riadkoch zlava doprava, pricom Specidlne pre zaciatocné policko plati
cesta(0,0) = jahody(0,0) a ak je = alebo y zdporné, tak cesta(z,y) = —oo. To je totiz policko, z ktorého
nevieme prist, kedze je mimo mriezky.

Tymto spésobom vypocitame rs hodnét, kazdé v konstantnom case, vysledna casova zlozitost takéhoto riesenia
je teda O(r, s).

strana 5 z 13 uloha B-II-3

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

Podiloha b)

Pri hladani najlepsich dvoch ciest nds to moze lakat vyuzif rieSenie z predchadzajicej tlohy. Vsak ¢o by sa
mohlo pokazit, ak do rieSenia zahrnieme najlepSiu moznui celkovu cestu, ze? A hoci je to ivaha, nad ktorou sa
oplati zamysliet, treba si to skusif aj odévodnit, pripadne ndjst nejaky protipriklad.

Protiargument k Hankinmu navrhovanému rieseniu by mohol zniet tak, zZe ich cielom je vyzbierat co najviac
policok s vela jahodami. Ak vsak Hanka pazravo vyzbiera t najlepsiu cestu, zvysné plodné policka nemusia
byt vSetky navstivitelné Jurom. Po troche kreslenia vieme nasledne prist napriklad s takymto protiprikladom:

0 |100| 99

0o 0 | O

99 (100 O

Vidime, ze najlepsia cesta by zobrala obe policka obsahujice 100. Dve zvysné policka s 99 jahodami vsak Juro
nevie vyzbierat obe naraz. Lepsie riesenie preto je, aby si tieto policka rozdelili a kazdy vyzbieral jedno so 100
a jedno s 99 jahodami.

Poduloha c)

Ak teda zavrhneme ,pazravé“ riesenia, musime sa pokusit vymysliet sposob, akym efektivne vyskusat vsetky
moznosti. Uvedomme si, Ze presne toto robilo rieSenie v podilohe a). Postupne sme sa pozerali na vSetky mozné
cesty mriezkou. Tento postup sme vSak zoptimalizovali tak, Ze ak na jedno policko existovalo viacero ciest (zhora
aj zlava), zapamétali sme si len to lepsie z nich. Vedeli sme totiz, Ze do budicna nis to menej dobré riesenie
nemusi zaujimat, lebo moéze byt nahradené tym lepsSim.

V rieSeni podiilohy a) sme postupovali tak, Ze pre kazdé miesto, kde sa nachddzala Hanka sme vyskusali vSetky
moznosti, kde sa mohla nachadzat o krok dozadu. Rovnako vsak mozeme postupovat aj v tomto pripade. Akurét
namiesto jedného cloveka budeme sledovat pozicie dvoch Iudi. Nech teda cesta(zp, yn, x;,y;) oznacuje najvacsi
pocet jahod, ktoré sme mohli vyzbierat ak Hanka prisla na policko (zp,ys) a Juro na policok (x;,y;). Vieme,
ze hladanym vysledkom je hodnota cesta(r, s,r, s) a na zaciatku plati cesta(0,0,0,0) = jahody(0,0).

Ostéava zistit, ako tieto hodnoty pocitat. Ako to teda vyzeralo krok dozadu? Kazdy z nich ma dve moznosti, z
ktorého policka prisiel na svoje aktudlne. Dokopy su teda 4 moznosti toho, kde sa mohli obaja nachadzat krok
dozadu a my si vyberieme najlepsiu z nich.

Pri pocitani si eSte musime davat pozor, aby sme niektoré policko nezapocitali dvakrat. Preto chceme pre
hodnotu cesta(zn,yn, x;,y;) pridat jahody z oboch policok jahody(xn,yn) aj jahody(z;,y;) iba ak (xp,yn) #
(x,y;). Stanovme si teda pomocnt hodnotu pocet(zp, yn, x5, y;), pre ktora plati:

Jahody(xn,yn) ak plati (xn, yn) = (v, ;)

pocet(Tn, Yn, Tj,Yj) = 4.] i
(Y J y]) {]CLhOdy(xhuyh) +]ah0dy(x]7yj) inak

Pomocou tejto hodnoty potom moZeme hodnoty cesta() pocitat nasledovne:

)
cesta(xn, yn — 1,75 — 1,5;),
cesta(ry, — 1, yn, 75,45 — 1),
cesta(xn, yn — 1,25, y; — 1)}

+ pocet(zh, Yn, Tj, Yj)-

strana 6 z 13 uloha B-II-3

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

Takéto riesenie ma ¢asovii zlozitost O(r2s?), tolko roznych hodnot totiz musime spoéitat.

EfektivnejSie rieSenie

V predchidzajicom rieseni sme sa snazili davat pozor na to, aby sme ziadne policko nezapocitali dvakrat.
Spravili sme to vSak naozaj spravne? Pozerali sme sa totiz iba na pripad, ked sa obaja postavili na jedno policko
naraz. Nemohlo sa vSak stat, ze niektoré policko Hanka navstivila ako prva a az neskor prisiel na toto policko
Juro?

V nasom rieseni simulujeme prechod Hanky a Jura cez mriezku naraz. Vzdy ked spravi jeden krok prvy z
nich, spravy jeden krok aj druhy. To ale znamend, Ze obaja si od zaciatku (0,0) vzdy vzdialeni rovnako vela.
Ak teda obaja navstivia niektoré policko (x,y), musia tak spravit obaja naraz v tom istom kroku, preto nase
predchadzajice riesenie funguje.

Toto pozorovanie nam vsak zaroven dava navod na efektivnesie riesenie. Ak totiz po¢itame hodnotu cesta(zn, yn, z;, y;)
pre vSetky mozné stvorice suradnic, zbyto¢ne pocitame aj so situdciami, ktoré nikdy nemoézu nastat. Napriklad
situdcia cesta(0, 0,7, s) alebo cesta(1,4,2,2) je zo zac¢iatku nedosiahnutelnd. Ak sa teda zbavime tychto zbytoc-
nych vypoctov, nas algoritmus zefektivnime.

Vzdialenost policka (z,y) od zaciatku (0,0) je z+y: pocet krokov ktoré sme isli doprava plus pocet krokov, ktoré
sme i8li dolava. Vieme, Ze nasa simulécia sa sprava tak, ze Hanka aj Juro st od zaciatku vzdialeni vzdy rovnako
vela krokov. Kazdi mozna poziciu Hanky a Jura si preto vieme reprezentovat iba pomocou troch hodndt zp,
x; a k, kde zp,,x; st ich z-ové stradnice a k pocet krokov, ¢o zatial spravili. Plati totiz, ze y, = k — =), a
Yj =k —Yn.

Hodnoty pocet() aj cesta() preto vieme pocitat aj nasledovne:

jahody(xp, k — xp,) ak plati z, = x;

t) Hk =
pocet(xp, x4, k) {jahody(ach, k — xp,) + jahody(xj, k — z;) inak

cesta(xp, xj, k) = max{cesta(mh —l,z; —1,k—1),
cesta(xp,x; — 1,k — 1),
cesta(xh 1 sz, k—1),
cesta(xp, xj, k — 1)}
+ pocet(zp, x4, k).

Ak4 je ¢asova zlozitost tohto rieSenia? Hodnota k < r 4+ s — 2, mdme teda r - s - (r + s — 2) roznych hodnot
cesta(), ktoré potrebujeme spocitat. Kazda z nich vieme spocitat v konstatnom ¢ase, kedze je to iba maximum
4 hodnét. Casova zlozitost tohto riesenia je preto O(rs(r + s)).

Listing programu (Python)

r, s = map(int, input().split())

grid = [list (map(int, input().split())) for _ in range(r)]
NEG = -10%%18

dp = [[[NEG]«*(r+s+l) for _ in range(r)] for _ in range(r)]

zaciatok
dp[0][0] [0] = grid[0][0]

for k in range(l, r+s-1):
for x_h in range(r):
yv_h =%k - x_h
if not (0 <= y_h < s):
continue

for x_j in range(r):
y_J =k - %3
if not (0 <= y_3j < s):
continue

best = NEG
for dx_h in (0, 1):
for dx_j in (0, 1):

strana 7 z 13 uloha B-II-3

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

px_h = x_h - dx_h
px_j = x_3j — dx_j
if px_h >= 0 and px_j >= 0:

best = max(best, dplpx_h][px_j][k-11])

if best < 0:
continue

if x_h == x_j and y_h == y_7j:

pocet = grid[x_h][y_h]
else:

pocet = grid[x_h][y_h] + grid[x_3j]l([y_j]
dplx_h][x_3jl[k] = best + pocet

print (dp[r-1][r-1] [r+s-2])

B-11-4 Pomaly krtko
Podiloha a)

Cisla delitelné tromi

Najprv ukdzeme riesenie pre delitelnost 3. Spomenme si na kritérium delitelnosti trojkou: ¢islo je delitelné
tromi prave vtedy, ked je delitelny tromi jeho ciferny sucet. Ako teda budeme budeme generovat ¢islo zlava
doprava, v type nedokoncenej miestnosti by sme si mohli ,pamétat® ciferny sucet dosial vygenerovanych cifier.
Moznych stuctov je vsak viac ako nasich 26 typov miestnosti, namiesto toho si teda budeme pamétat iba zvySok
tohto sictu po deleni tromi. Tym, Ze si paméatame len zvysok po deleni, tak mame zarucené, ze nam stacia na
ukladanie tejto informaécie len 3 typy nedokoncenych miestnosti (konkrétne, jeden pre kazdy zvysok po deleni).

Majme teda tri typy nedokoncenych miestnosti: A pre zvysok 0, B pre zvysok 1 a C pre zvysok 2. Pravidla pre tieto
miestnosti su také, ze z kazdej mozeme vygenerovat Iubovolni cifru a zakoncit to nedokoncenou miestnostou
zodpovedajicou upravenému cifernému stuctu.

A—OA|1B|2C|3A|4B|5C|6A|7B|8C|9A
B— OB|1C|2A|3B|4C|5A|6B|7C|8A| 9B
C—O0C|1A|2B|3C|4A|5B|6C|7A|8B|9C

Konstrukciu smieme zakoncit jedine vtedy, ked dosial vygenerované cifry maja ciferny sucet delitelny 3, t.j.
zvySok 0. To zabezpecime tym, ze budeme mat pravidlo A — & (smieme ukonéit konstrukeiu, ak je ciferny stucet
delitelny 3) a kazdé iné pravidlo bude mat na pravej strane nejakd nedokoncéend miestnost (Ziadne iné pravidlo
nevie ukoncit konstrukciu).

Este potrebujeme vyriesit zaciatok generovania. Zaciname v Z a ciferny sacet je 0, t.j. chceme, aby Z bolo ako
A. AvSak na rozdiel od A jednak nesmieme ukoncit konstrukeiu (to by sme mali éislo bez cifier), a tiez nesmieme
zacat cifrou 0 okrem pripadu, ked je to jedind cifra ¢isla. Budeme mat teda pravidla

Z-0|1B|2C|3A|4B|5C|6A|7B|8C|9A.
Cisla delitelné 35

Vyssie uvedeny postup vieme zovseobecnit pre delitelnost 35: mali by sme 35 typov nedokoncenych miestnosti,
v ktorych si pamétame zvysok po deleni 35, a pravidla na prechody medzi nimi. Pri delitelnosti 3 sme si podla
pravidla pocitali zvysok po deleni suctu, pre 35 vsak takéto pravidlo platit nemusi. To ale nevadi, budeme si
totiz pamaétat rovno zvysok po deleni zatial vytvoreného c¢isla. Totiz ak dosial vygenerované ¢islo ma zvysok x,
tak po pridani cifry ¢ bude mat zvySok (10 - z + ¢) mod 35.

Formalne: oznac¢me si tie typy nedokoncenych miestnosti postupne Ag, A1, ..., Ass. Potom pravidla na prechody
medzi nimi buda

Ai = O0A(10:4) mod 35 | 1A(10-i4+1) mod 35 | - -+ | 9A(10.i4+9) mod 35

strana 8 z 13 uloha B-II-4

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

Problém ale je, ze my mame k dispozicii iba 26 typov nedokonc¢enych miestnosti.
Uvedomme si, ze ¢islo je delitelné 35 prave vtedy, ked je delitelné 7 a 5 zaroveni (kedze 35 =5-7,a 5 a 7 si
nesudelitelné — st to rozne prvodisla). No a vSimnime si, Ze delitelnost 5 je velmi jednoduchd — ¢islo je delitelné 5
prave vtedy, ked je jeho posledna cifra bud 0 alebo 5. V priebehu generovania nam teda stac¢i pamétat si zvysok
po deleni 7 (na ¢o potrebujeme iba 7 typov nedokoncenych miestnost{), a pridat vhodné pravidla na dokoncenie
Cisla.
Majme teda typy nedokoncenych miestnosti Ag, Ay, ..., As a pravidla

A = 0A(10.9) mod 7 | 1A(10-i41) mod 7 | - -+ | 9A(10.i+9) mod 7-
Dalej pravidla pre poé¢iatoény typ nedokonéenej nory:

Z— 0| 1A | 2A | 3A3 | 4A4 | BAs | 6Ag | TAo | 8A; | ... | 9As.

Nakoniec sa zamyslime nad tym, ako presne vieme c¢islo zakoncit. To sa d4 dvomi sposobmi: bud cifrou 0, alebo
cifrou 5. Po pridani poslednej cifry ma byt ¢islo delitelné siedmimi. Ak sme pridali 0, tak ndm to delitelnost
neovplyvni. Kedze 10 a 7 st nesidelitelné, tak 7 deli 10z prave vtedy, ked 7 deli . To zodpoveda pravidlu

Ag — O.

Ak zakoncujeme cifrou 5, tak chceme, aby 7 delilo 10x + 5. Vysktusame ako x vSetky mozné zvysky po deleni 7,
a dostaneme, Ze jediny vyhovujici zvySok je x = 3 (mod 7). To zodpovedd pravidlu

A3 — 5.
Tato konstrukeia je spravna, lebo chceme vygenerovat prave také retazce, ktoré naraz spiiaji:

1. nezaé¢inaji 0 (zabezpecené pravidlami zo Z)
2. zodpovedaju ¢islam delitelnym 7 (zabezpecené Ag, ..., Ag a pravidlami z/do nich)
3. zodpovedaju ¢islam delitelnym 5 (zabezpecené pravidlami Ag — 0 a Az — 5)

Poznamka autorov: D4 sa na to pozerat aj tak, ze ak As je portfélio ¢isel delitelnych 5 a A7 je portfélio ¢isel
delitelnych 7, tak vlastne hladdme pravidla pre portfélio As N A7. Vo vzorovom rieSeni doméceho kola sme si
uz ukazovali, ako sa taka sada pravidiel d& vo vSeobecnosti zostrojif. Tato konstrukcia sa da zovSeobecnit aj
pre pomalého krtka (uvazovali sme tam normélny tvar pravidiel, kde na pravej strane je prdve jedna dokoncéend
miestnost alebo € — ¢o je skoro to isté, ako pomaly krtko). Otdzka znie, ako velmi sa ndm nafikne pocet typov
nedokonéenych miestnosti. D4 sa rozmysliet si, Ze ak a je pocet typov miestnosti potrebny pre As a b je pocet
typov miestnosti potrebny pre A7, potom pre A5 N A7 pouZijeme a-b typov miestnosti. Ak teda optimalizujeme
pravidla a pocet typov nedokonéenych miestnosti pre niektoré z As alebo Az, tak sa to pretavi aj do lepsej
(¢itaj: potrebujicej menej typov nedokonéenych miestnosti) sady pravidiel pre As N Az.

Podiloha b)

Zjednodusena verzia: sedem a-Cok za sebou

Zamyslime sa najprv nad jednoduchsou verziou tlohy, kde sa chceme vyhnit podiseku a’. T.j. nesmieme nikdy
vygenerovat sedem a-cok za sebou. V type nedokoncenej miestnosti si mézeme pamétat, kolko a-cok za sebou
sme uz vygenerovali; ak ich je uz 6, tak nedovolime postavenie dalSicho a-cka. Budeme mat teda 7 typov
nedokoncenych miestnosti Ag, Aq,...,As. Pre prvych 6 dovolime postavenie a-cka; tym sa pocet a-cok za sebou
zvysi o jeden. To zodpoveda pravidlam

strana 9 z 13 uloha B-II-4

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

AO — aA1,
A — aAg,

Ay — aA5,
A5 — alg.

Pre Ag nebudeme mat ziadne pravidlo, ktory by postavilo a — chceme, aby vygenerovana cast nory nikdy
neobsahovala a”. Otézka znie, ¢o ked chceme postavit iné dokonéené miestnosti? Pocet a-cok za sebou sa zmen{
na nula. Budeme mat teda pravidla

Ay — [b— Z]AO,
A > [b— Z]AO,

Ag — [b — Z]AO.

A nakoniec pravidla pre zaciatok a koniec nory. Na zaciatku nemame Ziadne za sebou iduce a-cka, takze budeme
mat jediné pravidlo Z — Ag. Co sa konca tyka, poc¢as konstrukcie nikdy neméame sedem a-cok za sebou, mbézme
teda konstrukciu kedykolvek ukoncit. To zodpoveda pravidlam A; — ¢ pre kazdé i = 0,1,... 6.

VsSeobecné riesenie

Vyssie uvedeny postup vieme zovSeobecnit. Noru chceme zostrojovat miestnost po miestnosti tak, aby sme si
vzdy boli isti, Ze slovo w = wiws ... w,, ktorému sa chceme vyhnif, v dokoncenej Casti nory nie je. Zaroven si
chceme popri konstrukcii pamétat informéciu o poslednych miestnostiach, aby sme vedeli povedat, aké dalsie
dokondené miestnosti mdzeme postavit. (Napriklad ak sa chceme vyhntf a’” a poslednych Sest miestnosti st
samé a, tak vieme, Ze nesmieme postavit a.)

Urcite by stacilo, ak by sme si pamétali poslednych n — 1 dokonéenych miestnosti, vdaka tomu budeme vzdy
vediet aké pismeno vieme doplnit aby sme nevytvorili zakdzany retazec w. Na to by sme viak potrebovali 267!
typov nedokoncenych miestnosti, ¢o je privela.

Ako sme vsak videli v jednoduchsej verzii, v skutoénosti ndm staci si pamétat aka dlhu ¢ast zakdzaného slova w
mame aktudlne postaveni na konci nory. Presnejsie, budeme mat jeden typ nedokoncenej miestnosti pre kazdé
k od 0 po n — 1, pricom k oznacuje kolko najviac z poslednych dokoncenych miestnosti je zhodnych s prvymi k
znakmi slova w (toto ozna¢ime prefix slova w).

Vdaka tomu budeme vediet, ze ak je kK = n—1, tak nemo6zeme postavit miestnost typu w,,, inak mézeme postavit
Tubovolni z miestnosti.

Otéazkou ostava, ¢i si vieme tuto informéciu korektne udrziavat vzdy po dostaveni dalsej miestnosti x.

Nech sme vedeli, ze poslednych k miestnosti sa zhoduje s prefixom w. Za tymito miestnostami sa pridala
miestnost x. Urcite sa teda vieme pozriet na tychto k& + 1 poslednych znakov a vypocitat si, kolko najviac z
nich sa rovna prefixu w a to pouzit ako novi hodnotu k. Takto vSsak vypocitame nanajvys hodnotu k + 1 — bud
sa pismeno z rovnd wy41 a len si ten pocet zvicsime, alebo nejakd informéciu zahodime, lebo najdlhsia zhoda
bude kratsia.

Nemoéze sa viak stat, ze pridanim pismena z v skuto¢nosti dizka zhodujiceho tseku stipne o viac ako 17
Napriklad na k + 27

To by ale znamenalo:

e Pred pridanim x sme mali na konci nory wiws ... wg.
e Po pridani x médme na konci nory wijws . .. Wg4+1Wk+2-

Ak oznacime miestnost pred wy ako ¢, tak po pridani z zaroven plati:

e Poslednych k + 2 hotovych miestnosti je qwiws ... wyx.

strana 10 z 13 uloha B-II-4

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

e Poslednych k + 2 hotovych miestnosti je wiws ... wWg11Wkt2.

Potom ale quiws ... w, = wiws ... wry1, €0 je v spore s tym, ze pred pridanim z bol najdlhsi zhodny prefix
dlhy k. Takze dizka najdlhsieho useku nevie skoCit o +2 alebo viacej. Ak teda pozndme najdlhsi prefix pred
pridanim z, tak méme dost informéacie na vypocet najdlhsieho prefixu aj po pridani x. V podstate staci iba
vyskutigat vietky mozné prefixy do dizky k+ 1 a zistit, & pasuji. Ukézeme si to na priklade, ktory je predmetom
podilohy, a to w = ananas:

« Vzdy, ked priddme miestnost inii ako a, n, s, tak novy najdlhsi prefix bude e. (Ziaden prefix ananas nebude
pasovat, lebo ananas takdto cudziu miestnost neobsahuje.)

o Ak najdlhsi prefix je €, po pridani miestnosti st iba dve moznosti na najdlhsi prefix: a a €. Ak pridame a,
tak to bude to prvé, inak to bude to druhé.

e Ak najdlhsi prefix je a, po pridani miestnosti mdze byt najdlhsi prefix an,a alebo . Prvé dostaneme
pridanim n, druhé pridanim a a tretie pre Tubovolnt inti miestnost.

e Ak najdlhsi prefix je an, po pridani miestnosti méze byt najdlhsi prefix ana,an,a,e. Prvé dostaneme
pridanim a. Druhé dostat nevieme, lebo to by znamenalo anz = gan pre nejaké x, q, ale druhd miestnost
nesedi. Tretie dostat nevieme, lebo by sme museli pridat a — ale vtedy dostaneme uz dlhsi prefix ana.
Prefix ¢ dostaneme pre vsetky ostatné miestnosti.

e Ak najdlhsi prefix je anana, po pridani miestnosti moze byt ananas, anana, anan, ana, an, a, ¢.

— ananas: Dostaneme pridanim s. My ale chceme zakéazat vygenerovanie podiseku ananas, tak v tomto
pripade pre miestnost s pravidlo nespravime (neumoznime ju postavit ako dalsiu).

— anana: Nevieme dostat, lebo to by znamenalo ananaxr = ganana — ale napr. druha miestnost nesedi.

— anan: Dostaneme pridanim n.

— ana: Nevieme dostat.

— an: Dostali by sme pridanim n, ale vtedy dostaneme dlhsi prefix anan.

— a: Dostaneme pridanim a.

— ¢: Dostaneme pridanim Iubovolnej inej miestnosti.

Oznacme si nedokonc¢ené miestnosti A, A,, Aap, - - -5 Aanana- VySSie uvedené uvahy zodpovedaji nasledovnej sade
pravidiel:

Ac — ah, | [b—2z]A,
As = nhAy [ah, | [o—mlA_ | [o—z]A,
Ay — @by | [b—2z]A
Aana — DAanan | @A, | [b —m]A_ | [0 —z]A,
Aanan — @Aanana | [0 — 2]A,
Aanana — DAanan | @A, | [o—m|A_ | [o —r]A_ | [t —z]A,

€

Pre tplnost potrebujeme este pravidla pre zaciatok a koniec. Na zaciatku je najdlhsi prefix ¢, staci teda pravidlo
Z — A.. Ukoncit konstrukciu smieme v ITubovolnom momente, ¢o zodpoveda pravidlam N — e pre kazdé
N = Ac,Aa; Aan, - - -, Aanana.

Podiiloha c)

Najprv sa zamyslime, v ¢om by mohol byt problém. Ak by sme neboli obmedzeni na pomalého krtka, tak
zakon¢it noru postupnostou presne 47 a-¢ok nie je problém:

1. Bud je nora dlh4 presne 47 (vtedy to je presne nora a*7),

2. alebo je nora dlhsia ako 47 miestnosti. Vtedy urcite konci 47 a-ckami a 48-sma miestnost od konca je
rozna od a (t.j. [b — z]).

strana 11 z 13 uloha B-II-4

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

Prvy pripad zachytime pravidlom Z — a”. Druhy pripad zachytime pravidlami

Z— [a—z]X,
X—la—z]X|[b—za".
Ak sme obmedzeni na pomalého krtka, tak pravidlo Z — a7 (a ani X — [b — z]a"") nevieme pouzit. Vo vzorovom
rieSeni{ doméceho kola sme si ukazovali, Ze ak sme ochotni nafiknut pocet typov nedokoncenych miestnosti, tak
sa takéto pravidla daju nahradit postupnostou viacerych:

Z — aZy, Z1 — aZs, ey Z4ys — aZlyg, Zyg — a.

Problém ale je, ze my sme obdmedzeni na 26 typov nedokonc¢enych miestnosti. Takze toto obmedzenie bude
klacovy dovod, preco sa to neda.

Dokazujme sporom: predpokladajme, ze mame sadu pravidiel, ktorej portfdlio je prave C. Ukdzeme, ze potom
tato sada pravidiel vygeneruje aj nejakt noru x ¢ C (o bude hladany spor). Zrejme a*” € C. Tito noru teda
vieme zostrojit nejakou postupnostou pravidiel, za¢inajic s nedokoncenou miestnostou Z. Tato postupnost bude
vyzerat takto:

*

Z —* aN;, —* a’N, —* a’N; — —* aNyg = &l

kde N; st (nejaké) nedokonéené miestnosti a —* znamend, ze z lavej strany dostaneme pravi stranu na niekolko
pravidiel (t.j. nie nutne presne jedno pravidlo). To plati, pretoze sice moézeme v pravidle nedokonéit Ziadnu
miestnost, nevieme ale dokon¢it viacero miestnosti naraz. Teda v nore budi dokonéené miestnosti a pribudat

jedna po druhej, nikdy nie viacero naraz.

Nedokoncené miestnosti IVq, ..., Nyg nie s zndme, my ale vieme, ze vsetkych typov nedokoncenych miestnosti
je len 26. To znamend (z Dirichletovho principu), Ze niektory typ sa v nasom postupe objavuje aspori dvakrat;
oznacme ho D. Nas postup teda vyzerd aj takto:

z —* a'D —* a'tip o At
pre nejaké j > 0. No ale potom vieme ¢asti medzi tymito D-ckami vynechat, a stidle dostaneme korektny postup
zodpovedajuci nejakej postupnosti pravidiel:

z —* a'D —* i
Presnejsie, od okamihu, kedy vyrobime a’D, budeme v tomto druhom postupe pouZivat tie pravidla, ktoré sme
v prvom postupe pouzili az od a*T7D. Toto vieme spravit, lebo zaéiname z tej istej nedokonéenej nory D. To
znamend, ze do portfélia musi patrit aj nora a*” =7, ¢o je hladany spor: a*’~7 nekonéi na 47 a-cok.

Poznamka autorov: Tato ivaha v trochu vSeobecnejsej forme hovori, Ze nezavisle od sady pravidiel, na dostato¢ne
dlhych norach sa ndm niektory typ nedokoncenej miestnosti D zopakuje. To da vela informacie o portféliu: jednak
mozeme tsek medzi D-¢kami vypustit (ako sme videli v podulohe ¢)), alebo ho méZzeme aj Tubovolne velakrat
zopakovat. Dalo by sa teda povedat, ze portfélio je vzdy v nejakom zmysle ,periodické®“. Mozte si skusit tymto
sposobom dokézat, ze neexistuje sada pravidiel (dokonca ani pre rychleho krtkal), ktorej portfélio by bolo:

. {a"v" | n € N}

. {a" |neN}

. {aP | p je prvodislo}

. {w | slovo w je palindrém, teda rovnaké odpredu a odzadu}

W N

Krtkovia, nory, konstrukéné pravidla a portfolia st dobre prestudovanou oblastou informatiky; samozrejme v
literature maji iné pomenovania. Oblast informatiky, ktord ich studuje, sa vola formdine jazyky a automaty;
nory su slovd, portfélia su jazyky, krtkovia a ich konstrukcéné pravidla zodpovedaju reguldrnym gramatikdm.

strana 12 z 13 uloha B-II-4

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategéria B

Olympiada v informatike
http://oi.sk/

Jazyky, pre ktoré existuje regularna gramatika, sa volaju requldrne jazyky a si to presne tie jazyky, ktoré vieme
rozpoznavat konecnym automatom.

STYRIDSIATY PRVY ROCNIK OLYMPIADY V INFORMATIKE

Priprava tloh: Michal Anderle, Truc Lam Bui, Jan Hozza, Jakub Simo
Recenzia: Michal Forisek
Slovenska komisia Olympiddy v informatike
Vydal: NIVAM — Nérodny institut vzdeldvania a mladeze, Bratislava 2026

strana 13 z 13 uloha B-II-4

