
MATEMATICKÁ OLYMPIÁDA 2025/2026
Riešenia úloh školského kola kategórie B

1 Rozhodnite, či je možné označiť hrany kocky čı́slami 1, 2, …, 12 tak, aby každé čı́slo bolo použité a aby pre každý
vrchol bol súčet čı́sel hrán, ktoré z neho vychádzajú, rovnaký.

(Mária Dományová)
Riešenie 1:
Predpokladajme, že je to možné, a označme 𝑆 súčet čı́sel hrán pri každom z vrcholov. Keďže každá hrana spája
dva vrcholy, je jej čı́slo započı́tané do súčtov pri dvoch vrcholoch, a dvojnásobok súčtu pri všetkých hranách je
tak rovný 8𝑆. Teda

8𝑆 = 2(1 +⋯+ 12) = 156,

𝑆 = 156
8 = 19,5,

čo je spor, lebo čı́slo 𝑆 ako súčet niekoľkých prirodzených čı́sel musı́ byť prirodzené. Hrany kocky teda nie je
možné označiť požadovaným spôsobom.
Riešenie 2:
Nech 𝑆 je súčet čı́sel hrán pri každom z vrcholov. Každá hrana kocky vychádza práve z jedného zo 4 vrcholov
vyznačených na obrázku.

4𝑆 = 1 +⋯+ 12 = 78,

𝑆 = 78
4 = 19,5,

čo je spor s prirodzenosťou 𝑆.
Poznámka:
Uvedené riešenia sú formulované ako dôkaz sporomna základe stručného argumentu, ktorý samôže zdať ťažké
vymyslieť. Preto ukážeme, ako k nemu možno dospieť.
Najskôr sa pokúšame hranám čı́sla nejako priradzovať a skúmame, aké súčty pri vrcholoch vychádzajú. Dajme
tomu, že jedným takým pokusom bolo priradiť hranám okolo jedného vrcholu čı́sla 5, 7 a 10. To dáva súčet 22,
takže okolo oboch krajných vrcholov hrany s čı́slom 1musia byť (disjunktné) dvojice čı́sel so súčtom 21. Takú
dvojicu máme však už len jednu (12 a 9), takže tieto čı́sla boli zrejme ako ohodnotenia trojice hrán vychádzajú‑
cich z rovnakého vrcholu kocky prı́liš veľké. Všeobecnejšie, keďže máme presne dané, ktoré čı́sla máme k dis‑
pozı́cii, tak ak zvolı́me okolo jedného vrcholu prı́liš veľké čı́sla, na iné vrcholy ostanú čı́sla prı́liš malé na to, aby
mohli súčty pri vrcholoch vyjsť všetky rovnako. Teda samotná hodnota súčtu 𝑆 nemôže byť prı́liš vysoká ani
prı́liš nı́zka. Na 𝑆 sa musia sčı́tať nejaké tri čı́sla z množiny {1, … , 12}, teda

1 + 2 + 3 = 6 ≤ 𝑆 ≤ 10 + 11 + 12 = 33.

Vidı́me, že obmedzenie zı́skané rozborom situácie len pri jedinom vrchole je veľmi slabé. Pozrime sa preto na
dva protiľahlé vrcholy kocky. Tie nemajú žiadne spoločné hrany a čı́sla pri nich sa neopakujú, takže sčı́tanı́m
čı́sel pri týchto šiestich hranách dostaneme nerovnosti

1 + 2 + 3 + 4 + 5 + 6 = 21 ≤ 2𝑆 ≤ 7 + 8 + 9 + 10 + 11 + 12 = 57,

takže
10,5 ≤ 𝑆 ≤ 28,5,

čo už je tesnejšı́ odhad. Je zrejmé, že ideálne by bolo do odhadu zapojiť všetkých dvanásť čı́sel (potom by dve
nerovnosti prešli na jednu rovnosť). Musı́me si ale rozmyslieť, na ktoré vrcholy sa pozrieť, ku ktorému vrcholu
započı́tať čı́slo ktorej hrany a podobne, a takéto úvahy sú jadrom vyššie uvedených riešenı́.


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();





Poznámka:
Dƽ alšou možnosťou je zostaviť 8 rovnı́c (pre každý vrchol jednu) s 13 neznámymi (čı́sla pri hranách a súčet 𝑆).
typu 𝑎 + 𝑏 + 𝑐 = 𝑆. Sčı́tanı́m niekoľkých z nich a pomocou znalosti toho, ktoré čı́sla sa pri hranách vyskytujú
(vieme, že sú to čı́sla 1 až 12, každé práve raz, nepoznáme však ich rozmiestnenie) je tiež možné dôjsť k výpočtu
hodnoty 𝑆.
Pokyny:
V neúplných riešeniach ohodnoťte kroky nasledovne:
A1 Tvrdenie, že to nie je možné: 1 bod
A2 Označenie spoločného súčtu pri vrcholoch (𝑆) alebo skúmanie tejto hodnoty: 1 bod
A3 Odvodenie nejakého platného odhadu na 𝑆 (napr. ako v poznámke vyššie) alebo neplatné, ale „rozumné“

rovnice pre 𝑆 (napr. 1 +⋯+ 12 = 8𝑆): 1 bod
A4 Zostavenie správnej rovnice pre 𝑆: 3 body
A5 Argumentácia neprirodzenosťou 𝑆 a formulácia záveru: 1 bod

Celkovo za neúplné riešenie dajte súčet bodov za A1, za A2 a za maximum z počtov bodov za A3, za A4 a za A5.

2 Máme pravı́tko bez mierky, ktoré umožňuje iba viesť priamku ľubovoľnými dvoma bodmi, a kružidlo, ktorým
sa dajú rysovať iba kružnice s ľubovoľným celočı́selným polomerom. Popı́šte a zdôvodnite konštrukciu rovno‑
stranného trojuholnı́ka so stranou dlƵžky √7 s týmito nástrojmi.

(Tomáš Bárta)
Riešenie 1:
Základnou myšlienkou je rozdeliť úlohu na dve časti: zostrojiť úsečku dlƵžky √7 a s pomocou tejto schopnosti
„orezať“ väčšı́ rovnostranný trojuholnı́k. Uvedomme si, že štandardný postup konštrukcie rovnostranného troj‑
uholnı́ka s danou dlƵžkou strany (ktorú už máme zostrojenú ako úsečku) naše obmedzené kružidlo dovoľuje iba
pre nenulové prirodzené dlƵžky.
Pre prvú časť využijeme Pytagorovu vetu v tvare 𝑎 = √𝑐2 − 𝑏2, kde za 𝑐 (dlƵžku prepony) a 𝑏 (dlƵžku jednej
odvesny) zvolı́me vhodné nenulové prirodzené čı́sla. Keďže 7 = 16 − 9 = 42 − 32, ponúka sa voľba 𝑐 = 4
a 𝑏 = 3.
Zvyšok riešenia obsahuje celý postup konštrukcie (pozri obrázok):
1. Sƽ tandardným postupom zostrojı́me rovnostranný trojuholnı́k 𝐴𝐵𝐶 s nejakou prirodzenou dlƵžkou strany.
2. Bodom 𝐴 vedieme kolmicu 𝑝 na priamku 𝐴𝐵. To možno vykonať aj s obmedzeným kružidlom (a pravı́tkom)

takto: na priamke𝐴𝐵 nájdeme pomocou kružidla dva rôzne body𝑋 a𝑌 tak, aby |𝐴𝑋| = |𝐴𝑌| = 𝑟 (bod𝐴 bude
teda stredom úsečky 𝑋𝑌) pre nejaké nenulové prirodzené čı́slo 𝑟. Následne zostrojı́me priesečnı́ky kružnı́c
s polomerom 𝑟 so stredmi v 𝑋 a 𝑌. Ich spojnicou je hľadaná kolmica na priamku 𝐴𝐵 prechádzajúca bodom 𝐴.

3. Pomocou kružnice so stredom v 𝐴 a polomerom 3 nájdeme na priamke 𝑝 bod𝐾 tak, že |𝐴𝐾| = 3 (máme dva
priesečnı́ky, z nasledujúceho postupu je vidieť, že nezáležı́ na tom, s ktorým budeme pracovať).

4. Zostrojı́me kružnicu so stredom v bode 𝐾 a polomerom 4. Táto kružnica pretne polpriamku 𝐴𝐵 v práve
jednom bode, ktorý označı́me 𝐷.

𝐴 𝐵

𝐶

𝐾

𝑋 𝑌
𝐷

43

√7

5. Trojuholnı́k 𝐴𝐾𝐷 je pravouhlý s preponou 𝐾𝐷 dlƵžky 4 a odvesnou 𝐴𝐾 dlƵžky 3, takže podľa Pytagorovej vety



platı́

|𝐴𝐷| = ට|𝐾𝐷|2 − |𝐴𝐾|2 = ඥ42 − 32 = √16 − 9 = √7.

6. Analogickým postupom nájdeme na polpriamke 𝐴𝐶 bod 𝐸 taký, že |𝐴𝐸| = √7.
7. Narysovanı́m priamky 𝐷𝐸 potom zı́skame trojuholnı́k 𝐴𝐷𝐸 taký, že |𝐴𝐷| = |𝐴𝐸| = √7 a |∢𝐷𝐴𝐸| = 60∘,

takže je rovnostranný.
Riešenie 2:
Alternatıv́noumožnosťou zı́skania úsečky s dlƵžkou √7 je použitie jednej z Euklidových viet, kde sa tiež vyskytu‑
jú druhé mocniny dlƵžok. Naprı́klad podľa Euklidovej vety o výške v trojuholnı́ku 𝑃𝑄𝑅 s pätou 𝑆 výšky z vrcholu
𝑃 platı́, že |𝑃𝑆|2 = |𝑄𝑆| ⋅ |𝑅𝑆|, takže voľba |𝑄𝑆| = 1 a |𝑅𝑆| = 7 dáva správnu dlƵžku výšky a súčasne kružnicu
nad priemerom 𝑄𝑅 môžeme zostrojiť našı́m obmedzeným kružidlom (dlƵžka jej polomeru je 7+1

2 čiže 4). Na
zı́skanie požadovanej dlƵžky na polpriamke 𝐴𝐵 (obsahujúcej stranu už zostrojeného rovnostranného trojuholnı́‑
ka 𝐴𝐵𝐶) budeme dlƵžky 1 a 7 nanášať na kolmicu na polpriamku 𝐴𝐵 vedenú bodom 𝐴, ktorú zostrojı́me rovnako
ako v predošlom riešenı́.
Riešenie 3:
Ukážeme, že ako vrcholy hľadaného trojuholnı́ka možno použiť vhodné body jednotkovej trojuholnı́kovej siete.
Zostrojı́me kružnicu s polomerom 1, na nej zvolı́me ľubovoľný bod, ten vezmeme ako stred ďalšej jednotkovej
kružnice. V ďalšom kroku vezmeme ako stred niektorý zo zı́skaných priesečnı́kov a postup opakujeme, kým
nezı́skame všetky označené body z obrázka.

𝑅 𝑃 𝑍 𝑇

𝑋

𝑆

𝑌

𝑄

Potom |𝑌𝑍| = √7, čo možno overiť napr. pomocou kosı́nusovej vety v trojuholnı́ku 𝑌𝑃𝑍:

|𝑌𝑍| = ට|𝑃𝑌|2 + |𝑃𝑍|2 − 2 ⋅ |𝑃𝑌| ⋅ |𝑃𝑍| ⋅ cos |∢𝑍𝑃𝑌|

= ඥ12 + 22 − 2 ⋅ 1 ⋅ 2 ⋅ cos120∘ = ඨ1 + 4 − 4 ⋅ ቆ−12ቇ = ඥ5 − (−2) = √7

alebo pomocou Pytagorovej vety použitej v trojuholnı́koch 𝑃𝑄𝑌 a 𝑍𝑄𝑌 (𝑄 je päta kolmice z bodu 𝑌 na priamku
𝑃𝑍, t. j. stred prislúchajúcej jednotkovej úsečky 𝑅𝑃):

|𝑌𝑍| = ට|𝑄𝑍|2 + |𝑄𝑌|2 = ට|𝑄𝑍|2 + |𝑃𝑌|2 − |𝑃𝑄|2

= ඨቆ52ቇ
2
+ 1 − ቆ12ቇ

2
= ඨ25

4 + 1 − 1
4 = ඨ25 + 4 − 1

4 = ඨ28
4 = √7.

To, že aj úsečky 𝑋𝑌 a 𝑋𝑍majú rovnakú dlƵžku, vyplýva zo symetrie celého obrázka, presnejšie zo zhodnosti troj‑
uholnı́kov 𝑅𝑍𝑌, 𝑇𝑋𝑍 a 𝑆𝑌𝑋.
Pokyny:
V neúplných riešeniach postupujúcich podľa prvého alebo druhého vzorového riešenia ohodnoťte kroky nasle‑
dovne:



A1 Nájdenie vhodných dlƵžok pre Pytagorovu vetu alebo ekvivalent: 2 body
A2 Popis konštrukcie kolmice na priamku jej daným bodom: 1 bod
A3 Popis zvyšku konštrukcie vhodného pravouhlého trojuholnı́ka: 1 bod
A4 Použitie rovnostranného trojuholnı́ka s prirodzenou dlƵžkou strany: 1 bod
A5 Dokončenie konštrukcie požadovaného rovnostranného trojuholnı́ka a prislúchajúce zdôvodnenie: 1 bod

Celkovo za takéto neúplné riešenie udeľte súčet počtov bodov za A1, za A2, za A3, za A4 a za A5
Kroky riešenı́ postupujúcich podľa tretieho vzorového riešenia (s trojuholnı́kovou sieťou) ohodnoťte takto:
B1 Popis konštrukcie vhodnej časti jednotkovej trojuholnı́kovej siete: 1 bod
B2 Nájdenie vrcholov siete tvoriacich úsečku dlƵžky √7 bez dôkazu: 1 bod
B3 Nájdenie vrcholov siete tvoriacich rovnostranný trojuholnı́k so stranou √7 bez dôkazu: 2 body
B4 Dôkaz tvrdenia B2 alebo B3: 3 body

Celkovo za takéto neúplné riešenie udeľte súčet počtu bodov za B1, za B4 amaxima z počtov bodov za B2 a za B3.
Kroky odlišných riešenı́ ohodnoťte takto:
C1 Konštrukcia úsečky dlƵžky √7 (vrátane zdôvodnenia): 4 body
C2 Konštrukcia rovnostranného trojuholnı́ka s už zostrojenou dlƵžkou strany √7: 2 body

Celkovo za takéto neúplné riešenie udeľte súčet počtov bodov za C1 a za C2.

3 Prirodzené čı́slo nazveme pätinové, keď sa presne 20% jeho deliteľov končı́ cifrou 5.
a) Nájdite nejaké pätinové čı́slo.
b) Dokážte, že každé pätinové čı́slo má presne 60% deliteľov končiacich sa cifrou 0.

(Josef Tkadlec)
Riešenie 1:
Nech 𝑑(𝑚) je počet (prirodzených) deliteľov čı́sla𝑚.
Nech𝑛 = 2𝑎 ⋅5𝑏 ⋅𝑚, kde𝑎 a 𝑏 sú prirodzené čı́sla a𝑚 nenulové prirodzené čı́slo nesúdeliteľné s2 aj s5. Ukážeme,
že

𝑑(𝑛) = (𝑎 + 1)(𝑏 + 1)𝑑(𝑚).
Každý takýto deliteľ je totiž tvaru 2𝑖 ⋅ 5𝑗 ⋅ 𝑘, kde 𝑖 ∈ {0, … , 𝑎}, 𝑖 ∈ {0, … , 𝑏} a 𝑘 je deliteľ čı́sla𝑚, pričom rôzne
trojice (𝑖, 𝑗, 𝑘) dávajú rôzne delitele. Máme teda 𝑎+1možnostı́ pri výbere exponentu 𝑖, 𝑏+1možnostı́ pri výbere
exponentu 𝑗 a 𝑑(𝑚)možnostı́ pri výbere deliteľa 𝑘. Deliteľ čı́sla 𝑛 sa končı́ cifrou 5 práve vtedy, keď je deliteľný 5
a zároveň nie je deliteľný2, t. j. prı́slušné 𝑖 je0, prı́slušné 𝑗 je zmnožiny {1, … , 𝑏} a prı́slušné𝑘 je ľubovoľný deliteľ
čı́sla𝑚 (čo je 𝑑(𝑚)možnostı́). Počet deliteľov končiacich sa cifrou 5 je teda 1 ⋅ 𝑏 ⋅ 𝑑(𝑚). Podmienka zo zadania
teda hovorı́, že

𝑏 ⋅ 𝑑(𝑚)
(𝑎 + 1)(𝑏 + 1)𝑑(𝑚) =

1
5 ,

takže
5𝑏 = (𝑎 + 1)(𝑏 + 1),
5𝑏 = 𝑎𝑏 + 𝑎 + 𝑏 + 1,
𝑏 − 𝑎𝑏 = 𝑎 + 1,
𝑏(4 − 𝑎) = 𝑎 + 1,

𝑏 = 𝑎 + 1
4 − 𝑎 .

Keďže sú čı́sla 𝑎, 𝑎 + 1 aj 𝑏 nezáporné, platı́ 𝑎 ∈ {0, 1, 2, 3} a vyskúšanı́m všetkých štyroch hodnôt dostaneme
jediné prirodzené riešenie, a to (𝑎, 𝑏) = (3, 4).
Preto 𝑛 = 23 ⋅ 54 ⋅ 𝑚 = 5000𝑚, kde𝑚 je nesúdeliteľné s 2 aj 5.
• Zvolı́me najjednoduchšiu možnosť𝑚 = 1. Potom 5000 je pätinové čı́slo.



• Postupujeme analogicky ako v úvode riešenia. Deliteľ 23 ⋅ 54 ⋅𝑚 sa končı́ cifrou 0, keď je deliteľný 10 (teda 2
aj 5). Exponent pri 2môžeme vybrať 3 spôsobmi (z celkovo 4), exponent pri 5môžeme vybrať 4 spôsobmi
(z celkovo 5), deliteľa𝑚 potom 𝑑(𝑚) spôsobmi. Podiel deliteľov pätinového čı́sla, ktoré sa končia 0, je teda

3 ⋅ 4 ⋅ 𝑑(𝑚)
4 ⋅ 5 ⋅ 𝑑(𝑚)

čiže 3
5 , čo je 60%.

Poznámka:
Ukážeme dve alternatıv́ne riešenia rovnice

𝑏 ⋅ 𝑑(𝑚)
(𝑎 + 1)(𝑏 + 1)𝑑(𝑚) =

1
5 .

Vzťah možno ďalej upraviť na tvar
𝑏 = 𝑎 + 1

4 − 𝑎 = −1 + 5
4 − 𝑎 .

Keďže 𝑎 aj 𝑏 sú prirodzené nezáporné čı́sla, 4 − 𝑎 je kladný deliteľ 5, teda 𝑎 = 3.
Ešte inou možnosťou je rozložiť výraz na ľavej strane rovnice

𝑎𝑏 + 𝑎 − 4𝑏 + 1 = 0

ako
0 = 𝑎𝑏 + 𝑎 − 4𝑏 + 1 = (𝑎 − 4)(𝑏 + 1) + 5,

teda
(𝑎 − 4)(𝑏 + 1) = −5.

Keďže 𝑎 a 𝑏 sú prirodzené čı́sla, platı́ 𝑏 + 1 ≥ 1. Cƽ ı́slo −5možno rozložiť na dva celočı́selné činitele, kde druhý
je kladný, iba dvoma spôsobmi, a to na−5 a 1 a na−1 a 5:
• 𝑎 − 4 = −5, z čoho 𝑎 = −1, čo nie je možné,
• 𝑎 − 4 = −1, z čoho 𝑎 = 3, potom 𝑏 + 1 = 5, t. j. 𝑏 = 4.
Riešenie 2:
Predpokladajme najprv, že sa v prvočı́selnom rozklade pätinového čı́sla 𝑛 vyskytujú iba prvočı́sla 2 a 5. Všetky
takéto čı́sla usporiadame do nasledujúcej tabuľky obsahujúcej v polı́čku na 𝑖. riadku a 𝑗. stlƵpci čı́slo 5𝑖−1 ⋅ 2𝑗−1.

⋮

125

25

5

1

⋮

250

50

10

2

⋮

500

100

20

4

⋮

1000

200

40

8

⋱

…

…

…

…

Všetky delitele čı́sla v nejakom polı́čku potom tvoria obdlƵžnikovú „podtabuľku“ s pravým dolným rohom v tom‑
to polı́čku a ľavým horným rohom zhodným s ľavým horným rohom celej tabuľky (polı́čko s čı́slom 1). Takýmto
podtabuľkám budeme hovoriť krátko len obdlƵžniky. (Vo vyššie uvedenej tabuľke uvažujeme polı́čko (2, 3) s čı́s‑
lom 20 a jemu prislúchajúci obdlƵžnik je podfarbený.)
Cƽ ı́slo sa končı́ cifrou 5 práve vtedy, keď je deliteľné 5, ale nie 2. V tabuľke to zodpovedá presne tým polı́čkam,
ktoré ležia v prvom stlƵpci a neležia v prvom riadku. Budeme teraz hľadať také obdlƵžniky, v ktorých je podiel
týchto polı́čok v tabuľke 1

5 . Nech má obdlƵžnik 𝑠 stlƵpcov. V každom riadku je práve jedno polı́čko v prvom stlƵpci,
teda podiel deliteľov končiacich sa cifrou 5 je menšı́ ako 1/𝑠. Preto 𝑠 < 5 (rovnosť vylučuje prvý riadok, kde
žiadne čı́slo končiace cifrou 5 nie je).
Ak má obdlƵžnik 2 stlƵpce a 𝑟 riadkov, tak podmienka je

𝑟 − 1
2𝑟 = 1

5 ,

ekvivalentne
5𝑟 − 5 = 2𝑟,



3𝑟 = 5,

𝑟 = 5
3 ,

čo je spor.
Ak má obdlƵžnik 3 stlƵpce a 𝑟 riadkov, tak podmienka je

𝑟 − 1
3𝑟 = 1

5 ,

ekvivalentne
5𝑟 − 5 = 3𝑟,
2𝑟 = 5,

𝑟 = 5
2 ,

čo je spor.
Ak má obdlƵžnik 4 stlƵpce a 𝑟 riadkov, tak podmienka je

𝑟 − 1
4𝑟 = 1

5 ,

ekvivalentne
5𝑟 − 5 = 4𝑟,

𝑟 = 5.
V tomto obdlƵžniku tvorenom celkovo 20 čı́slami je práve 3 ⋅ 4 čiže 12 čı́sel končiacich sa cifrou 0, tieto delitele
pätinového čı́sla 23 ⋅ 54 čiže 5000 teda tvoria 12

20 čiže 60%.
Keď pripúšťame aj iné prvočinitele pätinového čı́sla 𝑛, zapı́šeme toto čı́slo rovnako ako v predošlom riešenı́
ako 2𝑎 ⋅5𝑏 ⋅𝑚 pre nejaké𝑚 nesúdeliteľné s 2 a 5. Tabuľku teraz použijeme tak, že do polı́čka v 𝑖. riadku a 𝑗. stlƵpci
napı́šeme všetky delitele 𝑛, ktoré majú v prvočı́selnom rozklade pri 5 exponent 𝑖 −1 a pri 2 exponent 𝑗−1, teda
čı́sla tvaru 5𝑖−1 ⋅ 2𝑗−1 ⋅ 𝑘, kde 𝑘 je deliteľom 𝑚. V každom polı́čku je teda 𝑑(𝑚) čı́sel. Keďže v úlohe vystupujú
len podiely počtov deliteľov rôznych typov, môžeme postupovať rovnako ako vo vyššie vyriešenom špeciálnom
prı́pade pre𝑚 = 1, keď bolo v každom polı́čku tabuľky jediné čı́slo.
Pokyny:
V neúplných riešeniach postupujúcich podľa prvého vzorového riešenia ohodnoťte kroky nasledovne:
A1 Všeobecné vyjadrenie podielu deliteľov končiacich sa na 5 alebo na 0: 2 body
A2 Zostavenie a vyriešenie rovnice pre 𝑎, 𝑏: 2 body
A3 Nájdenie pätinového čı́sla (dokončenie časti a)): 1 bod
A4 Výpočet podielu deliteľov pätinových čı́siel končiacich na 0 (dokončenie časti b)): 1 bod

Celkovo udeľte súčet počtov bodov za A1, za A2, za A3 a za A4.
Za neúplné riešenia postupujúce podľa druhého vzorového riešenia udeľte body takto:
B1 Popis tabuľky a pozorovanie o tom, že delitele nejakého jej čı́sla tvoria obdlƵžnik: 2 body
B2 Použitie tabuľky na nájdenie pätinového čı́sla: 1 bod
B3 Použitie tabuľky na vyriešenie časti b): 2 body (v špeciálnom prı́pade 2𝑎 ⋅ 5𝑏), resp. 3 body (za všeobecné

riešenie)
Celkovo udeľte súčet počtov bodov za B1, za B2 a za B3.
Za neúplné riešenia postupujúce iným spôsobom udeľte body takto:
C1 Cƽasť a): 2 body (1 za čı́slo, 1 za zdôvodnenie)
C2 Cƽasť b): 4 body

Celkovo udeľte súčet počtov bodov za C1 a za C2.

• vydali: Slovenská komisia MO a NIVAM – Národný inštitút vzdelávania a mládeže

• recenzenti: Stanislav Krajči, Peter Novotný

• preklad: Peter Novotný


	fd@MO-B-skolskeKolo-riesenia-1: 


