
67. ročník Fyzikálnej olympiády 

v školskom roku 2025/2026 
kategória A  

riešenie úloh domácej prípravy 

 

 

1. úloha -  Kmity hranola na doske – oprava časti b) 

Riešenie: 

V dôsledku tlakovej sily guľôčky sa začne doska otáčať smerom k vodorovnej polohe a guľôčka sa 

začne valiť po povrchu dosky smerom k stredu O. Môžu nastať dva extrémne prípady.  

Ak je uhol 0 veľmi malý, predtým, ako dosiahne guľôčka stred O, zmení sa uhol  na záporný, 

guľôčka zastane a začne sa pohybovať nazad až postupne opustí dosku na ľavej strane. Môže to 

nastať hneď po prvom otočení alebo po niekoľkých zmenách smeru valivého pohybu.  

Ak je uhol 0 príliš veľký, guľôčka získa veľkú rýchlosť a prejde za bod O ďalej ako x0. Spadne 

z tyče na pravej strane ihneď, alebo po niekoľkých kmitoch. 

Dá sa očakávať, že existuje prípad, keď guľôčka prejde na druhej strane do vzdialenosti x0 a bude 

sa rovnako vracať, čo sa periodicky opakuje. 

Sú tak možné celkom 3 prípady. 1) guľôčka sa odkotúľa z dosky na pravej strane, 2) guľôčka sa 

odkotúľa z dosky na ľavej strane, 3) guľôčka bude na doske vykonávať harmonický  pohyb. 

      2 b 

b) Kladný smer výchyliek x a  uvažujeme v smere šípok v obrázku zadania. 

 
 

Na guľôčku pôsobí tiažová sila Fg = m2  g a v mieste dotyku s doskou normálová tlaková sila Fn 

a dotyčnicová sila statického trenia Ft. Na dosku pôsobí v mieste dotyku reakcia na tlakovú silu 

−Fn , reakcia na silu trenia −Ft, v osi tiažová sila FG a reakčná sila v osi FR. 

Pohyb guľôčky riešime v neinerciálnej vzťažnej sústave spojenej s pohybujúcou sa doskou, ktorá 

sa oráča okolo osi dosky nerovnomerne zrýchleným pohybom. Na guľôčku tak pôsobí zotrvačná 

(odstredivá) sila Fo = m2  2 x, kde  je uhlová rýchlosť otáčania dosky. 

Pohybová rovnica guľôčky v smere dosky 
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2 t 2 2 tsinm a m g m x F = − + + , kde ta x= , (1) 

v smere kolmom na povrch dosky je zrýchlenie guľôčky vzhľadom na dosku nulové 

 2 n 2 n0 cosm g F m a= − + − , kde na x= . (2) 

Chyba v pôvodnom riešení na r = . Dôsledok chyba v rovnici (6) – správne m2 x2 namiesto m2 r x. 

Pohybová rovnica rotácie guľôčky okolo jej osi prechádzajúcej stredom a rovnobežnej s osou 
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Pohybovú rovnicu otáčania dosky okolo jej pevnej osi vyjadríme v inerciálnej sústave. Na dosku 

pôsobí iba moment tlakovej sily guľôčky, momenty zvyšných síl (tiažovej a reakcie v osi) sú 

nulové. 
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Vyjadríme sústavu rovníc pre kinematické veličiny x a . 

Z rovníc (1) a (3) vylúčime Ft. Po úprave máme 
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Z rovníc (2) a (4) dostávame 
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Pozn.: Rovnice možno upraviť aj na iný ekvivalentný tvar. 

c) Predpokladáme, že uhol vychýlenia je veľmi malý, čo umožňuje zjednodušiť rovnice na tvar 
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Ďalej predpokladáme, že vplyv zotrvačných síl je veľmi malý, čo umožňuje v prvej rovnici 

zanedbať odstredivú silu, a v druhej zanedbať moment zotrvačnosti guľôčky vzhľadom na os 

otáčania dosky voči momentu zotrvačnosti dosky k tej istej osi. Rovnice dostanú tvar 
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Ide o sústavu dvoch lineárnych diferenciálnych rovníc. 

d) Ak chceme zistiť časovú závislosť každej z veličín, musíme dostať rovnice, obsahujúce vždy iba 

jednu premennú. 

Vyjadríme rovnicu iba pre premennú x vylúčením . Keď druhú rovnicu dvakrát derivujeme, objaví 

sa na pravej strane druhá derivácia , a za ňu dosadíme z prvej rovnice 
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Presvedčíme sa, či má rovnica harmonické riešenie. Keďže na začiatku (t = 0) je výchylka 

maximálna a potom klesá, predpokladáme harmonickú funkciu výchylky v tvare 

 ( ) 0 cosx t x t=  . 

Funkciu a jej štvrtú deriváciu dosadíme do rovnice (7) 
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Rovnica je splnená, ak 
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Perióda kmitov 

 1

2

2π 2π 7

60

m
T

g m
= =

 


.   2 b 

e) Ak má byť pohyb guľôčky harmonický, tzn. ustálené kmity, musia sa s tou istou periódou opakovať 

rovnaké podmienky ako na začiatku, tzn. aj uhlová výchylka dosky musí byť harmonická 

s rovnakou periódou. 

Z rovnice (8) vyjadríme časovú závislosť uhlovej výchylky 
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Odtiaľ máme podmienku pre začiatočné hodnoty veličín x0 a 0 
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Pohyb guľôčky je harmonický ak je splnená táto podmienka. 

 

  



2. úloha -  Webbov teleskop LK 

Riešenie: 

a) Vzdialenosť stredu Zeme od hmotného stredu sústavy 
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b) Ak má byť ďalekohľad stále na spojnici S−Z, musí obiehať okolo hmotného stredu S−Z rovnakou 

uhlovou rýchlosťou ako Zem, danou rovnicou 
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Pre vzdialenosť 𝑟 ďalekohľadu od stredu Zeme platí 
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Keďže p << 1, môžeme rovnicu zjednodušiť a prepísať v tvare 
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Z rovnice vyplýva, že musí byť aj x << 1 

Rovnicu upravíme na tvar   
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Pomocou približného vzťahu pre x << 1 
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Pre MS = 2,01030 kg, MZ = 6,01024 kg a dSZ = 150 mil. km dostávame r = 1,5106 km. 5 b 

Vo vzdialenosti 1,5 mil. km od stredu Zeme sa nachádza jeden z 5 libračných (Lagrangeových) 

bodov sústavy Slnko -Zem. 

Pozn.: Rovnicu (1) možno riešiť aj numerickou, resp. grafickou metódou. 



c) Rozlišovaciu schopnosť určuje difrakcia vlnenia na ploche vyžarovacej (detekčnej) plochy. Pre 

kruhové zrkadlo platí vzťah pre uhol rozlíšenia 

 1,22
D


 = , možno prijať aj vzťah  

D


 = , ktorý platí pre štrbinu. 

V prípade oboch teleskopov ide o vlnové dĺžky W  2,6 m, H  0,950 m.  3 b 

Hubbleov teleskop sa využíval najmä v oblasti optického spektra, zatiaľ čo Webbov teleskop je 

určený pre oblasť infračerveného žiarenia. 

  

3. úloha -  Rovnováha v magnetickom poli 

Riešenie: 

a) Na guľôčky pôsobia sily magnetického poľa a vzájomnej elektrickej odpudivosti. Vo vzťažnej 

sústave spojenej s rotujúcim vláknom pôsobí na guľôčky zotrvačná (odstredivá) sila. Aby mohla 

nastať situácia, že guľôčky sa nedotknú držiakov D, musia mať kladný elektrický náboj. Pri 

konštantných otáčkach je pohybová rovnica pohybu guľôčok pozdĺž vlákna 
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Pre rovnovážnu polohu platí aA = aB = 0, a teda 
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Z rozdielu rovníc dostávame podmienku pre stav rovnováhy A Br r r= = . 

V stave rovnováhy sú obidve guľôčky v rovnakej vzdialenosti od osi otáčania. 

Po dosadení do jednej z rovníc dostávame vzdialenosť od osi pre danú uhlovú rýchlosť 

 
2

3
24

k q
r

q B m 
=

−
, kde 2πn =  a  9 1

0

1
9,0 10 m F

4π
k



−= =   . (1) 3 b 

b) Graf závislosti r od n pre dané hodnoty veličín: 2 b 

Z grafu vidíme, že určitá minimálna vzdialenosť rm existuje iba 

pre jediné otáčky nm. Rovnovážna vzdialenosť r > rm existuje 

pre dve rôzne hodnoty otáčok.  1 b 

c) Určíme minimum funkcie (1). Stačí určiť minimum výrazu pod 

odmocninou. Pre minimum je derivácia výrazu nulová. 

 

( )
22

2

d 1 2
0

d

q B m

q B m q B m



    

  −
= − = 

−  −
, 

odkiaľ dostávame uhlovú rýchlosť, resp. otáčky, 
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Po dosadení do vzťahu (1) máme 
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Minimálna dĺžka vlákna Lmin  = 1,42 m.   2 b  



d) Ak má vlákno dostatočnú dĺžku L, existujú rovnovážne polohy vo vzdialenosti r < L / 2 od osi 

otáčania, v rozsahu uhlových rýchlostí pre uhlové rýchlosti dané funkciou (1), z ktorej dostávame 

kvadratickú rovnicu pre  
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Pre dané hodnoty r1 = L1 / 2 rovnovážna poloha nenastane.  

Pre r2 = L2 / 2 nastanú dve rovnovážne polohy pre otáčky n1 = 7 ot/s a n2 = 73 ot/s. 2 b 

 

4. úloha -  Slnko 

Riešenie: 

a) Situáciu znázorňuje obrázok. 

 
 

Veľkosti telies nie sú v rovnakej mierke, v skutočnosti sú Venuša a Zem v porovnaní so Slnkom 

bodové objekty. 

Uhol V maximálneho odchýlenia Venuše od spojnice S−Z určuje vzťah 
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Ak pozorujeme vstup Venuše do slnečného kotúča z miest 1 a 2 na Zemi, vidíme, že medzi 

okamihmi vstupu musí Venuša za čas tr opísať uhol  r = DZ / dSZ.  
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Po dosadení DZ = 12 756 km a daných hodnôt dostávame dZS = 149,6 mil. km. 

Priemer Slnka 
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Podľa Newtonovho gravitačného zákona  
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Pre G = 6,6710−11 Nm2kg−2 dostávame MS = 1,991030 kg.   2 b 

b) Pre celkovú vyžiarenú energiu platí 
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Odtiaľ dostávame 
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Pre  = 5,6710−8 Wm−2K−4 dostávame TS = 5 780 K. 

Celkový vyžiarený výkon 
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c) Podľa Wienovho posuvného zákona 
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kde b = 2,8910−3 mK je Wienova konštanta. 

Vidíme, že výsledky sú prakticky rovnaké.   2 b 

d) Energia vyžiarená pri jednej syntéze 4 protónov 

 ( ) 2

γ p α4E m m c= − = 4,125  10−12 J = 25,7 MeV   2 b 

e) Výkon PS vyžiarený Slnkom zodpovedá sekundovému počtu rekcií 
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=  = 9,361037 reakcií/sa 4 n1 atómov vodíka premení na hélium, čo predstavuje 

hmotnosť 
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čas potrebný na premenu 10 % zásoby vodíka v jadre Slnka 
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5. úloha -  Zrkadlenie na ceste 

Riešenie: 

a) V prírode je to napr. spomenuté zrkadlenie na ceste, fatamorgána v púšti alebo nad hladinou vody 

v mori, chvenie vzduchu nad teplým radiátorom, astronomická refrakcia pri pozorovaní hviezd, 

lom svetla na rozhraní dvoch alebo viacerých prostredí, vedenie svetla v gradientovom optickom 

vlákne, GRIN (Gradient Refraction Index) šošovky, atď.   1 b 

b) Uvažujme lúč prenikajúci do vrstvy nehomogénneho vzduchu. 

 
Predpokladajme, že lúč má tvar oblúku kružnice s polomerom R, obrázok. Na oblúku uvažujeme 

elementárny úsek s dĺžkou ds = R d, čo zodpovedá výškovému rozdielu dh = ds sin. 

Podľa zákona lomu máme 
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Po roznásobení a zanedbaní malého členu dn sin d, sin d  d a cos d  1 
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Po dosadení za cos z (1) a s použitím vyjadrenia dh dostávame rovnicu 
2

2

0 0cos d sin d d
n

n n n h
R

  = = , resp. 
2

0 0

1 d
d

cos

n
h

R n n
= , (3) 

kde predpokladáme R konštantné pre oblúk kružnice. Rovnicu integrujeme v medziach od vozovky 

do výšky h 
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Index lomu je lineárnou funkciou hustoty vzduchu 
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kde Rm je molárna plynová konštanta, Mm molárna hmotnosť vzduchu a T termodynamická teplota. 
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Vyjadríme index lomu 
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Dosadíme do (4) 
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Vyjadríme teplotu 
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Z podmienky na hornom okraji nehomogénnej vrstvy h = ho a T = Ta vyjadríme polomer 
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Po dosadení do vzťahu (5) dostaneme pre teplotu po úpravách napr. vzťah (môže mať aj iný tvar) 

 

( ) ( )

( )

a
a 0 0 0 0

v o

v

a
a 0 0 v

v o

1 1 1

1 1

T h
T n T n T

T h
T T

T h
T n T T

T h

 
+ − − − − 

 
=

 
+ − + − 

 

.  (7) 

Graf funkcie t = f (h) pre dané hodnoty veličín   3 b 

 
Pozn.: 

Pre dané hodnoty možno použiť určité zanedbania, najmä pre n0 – 1 << 1 a Ta  Tv  T0 

 

( )

a v

a v a

o

T T
T

h
T T T

h



+ −

.   (8) 

V podstate ide o veľmi krátky úsek hyperboly, ktorý možno aproximovať úsečkou. 

 
( )

a v o

0 0 0 v a 0

1

1 cos

T T h
R

n n T T T 


− −
.  (9) 

c) Po vniknutí do vrstvy vzduchu s teplotným gradientom prenikne lúč do hĺbky pod horný okraj 

vrstvy (obrázok) 



 ( )01 cosy R = − . 

Lúč sa „odrazí“ od nehomogénnej vrstvy, ak y < ho, tzn. 

 ( )0 o1 cosy R h= −  . 

Po dosadení za R a pre Tv > Ta 

 
( ) ( )

( ) ( ) ( )
v a 0 0 0

22
0 a v a v 0 0 0 0

11
1

cos 1 1

T T T n n

T T T T T n T n

− −
 +

+ + − + −
, 

prípadne po zjednodušení 

 
( )

( )v a 0

0 0

0 a v

1
1 1

cos

T T T
n n

T T

−
 + −  

a po úprave 

 

( )
0 max

v a
0 0 0

a v

1
cos cos

1 1
T T

n n T
T T

  =
 −

+ −  
 

.  (10) 

Ak má lúč dopadnúť do oka vodiča vo výške H nad vozovkou, musí byť y  > ho − H, tzn. 

 ( )0 o1 cosy R h H= −  − . 

Po dosadení za R dostávame 

 
( ) ( )

( ) ( )( )

0 0min

0 0 0 v a

o 0 0 a v 0 0

1
cos cos

1
1 1

1 1
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, 

prípadne po zanedbaní malých členov 
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0min

v a
0 0 0

a v o

1
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1 1 1
T T H

n n T
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. 

Zrkadlenie vodič pozoruje pri uhloch dopadu lúčov na nehomogénnu vrstvu vzduchu 

 0 min < 0 < 0 max. 

 

Najbližší okraj zrkadlenia je vo vzdialenosti, ktorá zodpovedá 0 max (pozri obrázok). Vodič vidí 

zrkadlenie pod uhlom v daným vzťahom 

 ( )min v1 cosH R = − , 

kde 

 
( )

a v o
min

0 0 0 v a 0max

1

1 cos

T T h
R

n n T T T 


− −
 

a po dosadení 

 ( )
( ) ( )

a v o a v o
min 0 0 0

v a o 0 0 0 v a 0 0 0
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Odtiaľ 

 ( ) v a
v 0 0 0

min a v o

cos 1 1 1
T TH H

n n T
R T T h


−

= − = − −  

a vzdialenosť 



 

( )
( )

v
min

2
v v

2

0 v a

0 0

a v o

cos

tan 11 cos
1

1 1
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d H

T T T H
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

 
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−
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. 

Vodič má dojem, že zrkadlenie vychádza z miesta na vozovke vo vzdialenosti dmin a dosahuje až 

do nekonečna pre 0 min. . 

Všimnite si ilustračný obrázok zrkadlenia v zadaní úlohy.  

Pre dané hodnoty 0,21° < 0 < 0,27° a  403 m < d <  .   4 b 

6. úloha -  Difrakcia elektrónov 

Riešenie: 

a) Atóm vo vrchole kocky je spoločný 8 susedným kockám, tzn. k jednej bunke prispieva podielom 

1/8. Pri počte 8 atómov je to príspevok 1 atóm. Atómy v stredoch stien sú spoločné vždy 2 

susedným bunkám, tzn. celkový príspevok je ½  6 = 3 atómy. Každá bunka tak prispieva ku 

kryštálu n = 4 atómami.    1,5 b 

Hustota monokryštalickej látky  

 Ni

3

nm

a
 = , odkiaľ máme  Ni m

3 3

A

nm nM
a

N 
= = .   2 b 

Pri atómovej hmotnosti Mm = 58,69 gmol−1, NA = 6,0221023 mol−1 a  = 8,908103 kgm−3 

dostávame a = 0,352 nm. 

b) V prvom prípade sú roviny rovnobežné s čelnou stenou a vzdialenosť je a1 = a / 2. 0,5 b 

V druhom prípade sú roviny kolmé na stenovú uhlopriečku a vzájomná vzdialenosť je polovica 

stenovej uhlopriečky, tzn. a2 = / 2a .   0,5 b 

V treťom prípade sú roviny kolmé na telesovú uhlopriečku a ich vzájomná vzdialenosť je tretina 

telesovej uhlopriečky, tzn. a3 = / 3a .   0,5 b 

c) Ak sú elektróny urýchľované napätím U (za predpokladu veľmi malej začiatočnej rýchlosti), 

nadobudnú hybnosť danú rovnicou 



 
2

2

p
eU

m
= , odkiaľ máme 2p m eU= . 

Vlnová dĺžka elektrónov podľa de Broglieho vzťahu 

 
2

h h

p m eU
 = = . 

Vlnenie odrazené od spodnej roviny atómov prekoná 

dlhšiu dráhu o 2 cosd = . 

Ak je  = k , kde k je celé číslo, dochádza ku 

konštruktívnej interferencii. 

Z tejto podmienky dostávame 

 
2 cos

2

h d

k km eU

 
 = = = . 

Pre prvé interferenčné maximum (k = 1) máme 

 

2

1

2 2 cos
n

k h
U

m e d 

 
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 
.  3 b 

d) Pre dané hodnoty dostávame U1 = 54,1 V a U2 = 216 V.   2 b 

Hodnoty zodpovedajú výsledkom Davissonova - Germerovho experimentu. 

 

 

 

7. úloha -     Meranie tiažového zrýchlenia − experimentálna úloha 

Riešenie úlohy      max. 10 bodov 
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